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A two-dlrPanalona1 self-elmllar problem of discharge of a heat conducting gas 
Into vacuum Is analyred. The temperature at the boundary of gas and vacuum 
18 assumed to change a8 an exponential function of tlme. The coefficient of 
thermal oonduotlvlty depends exponentially on temperature and density. The 
Initial gas density 1s assumed to be finite and constant. With definite 
values of exponents this problem la self-similar; I.e. the system of partial 
differential equations can be reduced to the solution of a system of ordinary 
equatione. 

The eelf-modeling propertlea of solutions of this kind of problems has 
been noted earlier In [ 1 and 23. The problem analyzed here Is a particular 
caee of the problem of piston motion considered In [3]. In this problem, 
however, there appears at the boundary of gas and vacuum a new singular point 
which doea not occur In the piston problem. 

A numerloal aolutlon of the boundary value problem defined by a system 
of ordinary equations Is made difficult by the presence In the latter of 
singular points, and of dlscontlnultles in the sought aolutlon. These dlf- 
flcultlea have been overcome by a quallta’tlve analysis of the behavior of 
Integral curves, and by the selection of a suitable method of numerical lnte- 
gratlon. 

It la shown In this work that, depending on the Initial parameter8 of the 
problem, there may exist two kinds of solutiona. Thle had been noted earlier 
In Cl, 3 and 43. Examples of these are presented here. The degeneration of 
the solution into a trivial one, when the thermal conductivity coefficient 
la either invariant of deneity, or increase8 with lncreaeing density, la 
pointed out. 

1. We consider a oold gas defined by the following equation8 of state: 

p = HpT, E=--RT 
T-1 

Here, R Is the gas constant, y Is the Poiseon’s adlabatlo exponent, 

p 18 the preaaure, p the denelty, P the temperature, and E the lnter- 

nal energy. One-dlmenalonal equations of a plane motion In Euler coordinate8 

have the form 
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Here u is the velocity and R the coefficient of thermal conductivity. 

The temperature of the vacuum space bounding the gas Is given by 

T = Totn (n > 0, To = const) (1.2) 

With the assumption that 

x = xOp-lT(l+n)/" (W+=const) 

the problem will be a self-similar one. The Introduction of variables 

h= (nf2)r 
2 Jf~opY’n t T = B,t”B (A) (B, = con& [To]) 

u = JmB&n~ (h), 

reduces system (1.1) to a system of ordinary 

P = PO6 (A) 
equations 

(1:3) 

5’ = (0’ + &t) (A “,5, 
ql 26 

(1.4) 
= - - - (2 + n) (7 - 1) [ (7 1) x + & 0 + (t 1) 0’ 1 

-1 

where A 

As the 

Is a dimensionless constant. 

front of expansion Is also the traJectory of particles, tie have 

Taking Into account (1.2) and (1.3) we obtain 
. 

(1.5) 
It was shown In [5 and 63 In which gas dynamic effects were omitted that 

with n > 0 the perturbation front spreads with a finite velocity. Here, 

It Is assumed that A < 0~ . The value of B. can always be selected so as 

to have th the perturbation front b = 1 , In which case we have 

(a) e = 0 , (b) c = 0 , (c) b - 1 , (d) q - 0 (1.6) 

Conditions (1.6) mean that at the perturbation front the hydrodynamic 

parameters and the heat flux are continuous. If e'(l) < (D , then condition 

(d) follows from (a). However, generally speaking, the condition for 8'(l)<- 

Is not always fulfilled. 

2. In deriving our solution, we shall use the conditions at the dlscon- 

tinulty which In the presence of thermal conductivity effects are 
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p&-D) =pa(v---L p&+-D)” +RpA= 
- 9 2 (IA2 - W -t Rp2T, 

(2.1) 

Here, D Is the discontinuity velocity, and the subscripts 1 and 2 denote 

parameters In front of the discontinuity, and behind It respectively. In the 

derivation of equations we shall make use of the fact that the temperature 

in the Interval between the forward and the rear discontinuity fronts is con- 

tinuous (lsothermlc process). 

As the problem considered here ia a self-similar one, the discontinuity 

will always be a X-line. Therefore, 

D = 1/~,t’%, (2.2) 
The substitution of (1.3) and (2.2) Into (2.1) yields 

(2.3) 
3. Point M(h = 1, 8 = 0, c= 0, 6=1, Cj= 0), which corresonds to 

the perturbation front (1.6) will be a singular point. It belongs to a mani- 

fold of singular points 8 = 0 , q - 0 . The Integral curves passing through 

point M can be found by separating the main terms of the right-hand sides 

of system (1.4). The singular point M Is such that only one integral curve 

emanating from It can be found In the relevant area. The solution in the 

perturbatlon front neighborhood Is approxlmately.deflned by the following 

Formulas: 
n 

i= s 2 (n + 1) I n+l 
A(n+2)(r--I)n ’ 

R=k(1-& 6= e4 

6= & exp -/& j (1 - A)“;: exp * dh 

(3.4) 

We note that with n > 0 we have n/(n + 1) < 1 which means that at the 

front the temperature derivative Is Infinite. 

4. It Is known that In the absence of thermal conductivity, the gas effIux 

velocity Is finite and equal to - 2&(y - 1) , where o,, Is the Initial 

velocity of sound of the gas at rest. It was noted In [7] that the efflux 

velocity of a gas subject to energy release, is Infinite. In the problem 

considered here, the heat conducting gas will also expand with Infinite velo- 

city. We shall prove this (*). 

l ) The proof of this In Lagrangean coordinates was kindly communicated to 
the author by S.P. Kurdlumov and P.P. Volosevlch. 



We shall show that 6(x,) # 0 f if co= x0 is of finite magnitude. It 

follows from Equations (1.4) that 

(In 8)’ = c 0’ -j- _$ g) [(h-cJ2-el-1 f f (h) 

Integrating the above equation over certain interval A,< X 5 h, . we 

obtain 

6 (h) =3 (%) exp - 5 f (AI CD+ (W 
h 

We divide the Integral of (4.1) into two 

.I 

A 
s (h - g.12 - e 
a 

and consider lim J for X - X0+ 0 . It is evident that the first integral 

is finite, and so is the second one. It can, in fact, be replaced in the 

neighborhood of point )\,, by 

Here cz is a finite constant. Therefore, the integral 

e ud J (ho) = ‘lim J (h) = cl + c2 + In 8. 
h=A,+O 

is finite and 6(x,) # 0 , which contradicts condition (1.5). Therefore, 

the expansion velocity cannot be finite. We may point out that this proof 

is valid for any & . 

It Is possible to indicate an integral curve for which bc = 0 , if we 

assume cc=-m . Proof of this will be given in Section 6. 

(1.:; 

The expression for a dimensionless flow is given by the formula of 

I+= 
4 =: - Ai& n 6' 

To have a physical sense, the flow at the front of expansion must be 

finite and positive. Therefore, 

e'(- oo)= 0 (I>O); 8'(- oo)<O# oo (I = 0) 

6' (- oo) = - 00 (E < 0) (5.1) 

Because of the condition that o'(- =J) # 0 , when A 5 0 and a(x) z 0 

for -c9<x ZG 1 , it follows that oo- m . Consequently, the problem stated 

in Secticn 1 can have any meaning only, if the temperature at the boundary 

is considered to be infinitely great. This means that with the exponential 

temperature law (1.2), and with a finite value of To and X r; 0 , the prob- 
lem has a degenerate solution. The boundary expanding with an lnflnlte velo- 

city, locks the heat flow at Infinity, and there Is no motion whatsoever. 
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6. Conditions 

:V (h = 

where R. and p. 

singular point of 

at the front of expansion (1.5) are defined by point 

-X,0 =e,, E;== - cy), 6 ;=I 0, fJ= &J (6-l) 

remain to be determined. Point N , as point M , is a 

system (1.4), and belongs to a manifold of singular points 

h==-o0, c=;:-X, 6=0 

conditions (6.1) and (5.1) that R*'= 0 , when X r 0 . 
possible to substitute, as an approximation of 5' of (1.4) 

It follows from 

It is, therefore, 

in the neighborhood of point N , by Equation 

5’ L- 
,I< (h - 5) 

(II -+- 2) [(h - 5)’ - @,,I (6.2) 

We shall use the transformation 5 = l/p , h = l/x for the analysis of 

Integral curves in the neighborhood of point (x = 0, y = 0) within quadrant 

xso, yriJ. Equation (6.2) then becomes 

(6.3) 

and the s5ngular point moves Into the coordinate origin. Its character Is 

established on the basis of results obtained by Frommer (8). We introduce 

notations 
y I x =y IL, 9 (II, X) = y' (z, I/) -- u 

The critical directions along which the integral curves may, In this case, 

reach the singular point will be 

(1) U = 0, (2) ZL = 1, (3) Ii = (II + 2) i n: (4) a= x; 

According to LB1 the following qualitative conclusions may be deduced. 
There is only one lntgral curve in direction (l), namely, the coordinate axis 

y = 0 (because a$/& < 0 , when x = 0, u = 0). 
:-.--.- -- -~ j 

There are also single curves only with slopes 

defined by (2) and (3) which pass through the 

coordinate origin (a$/a-, < 0 , with u = 1 , 

.r = 0 , and ag/au < 0 , with u =(n + 2)/n , 

x = 0). Direction (4) has an infinite multi- 

pllcity of Integral curves. The character of 

curves defined by Equation (6.3) Is represented 

in Fig.1. 

The curve with slope (2) will yield the 

unknown solution, and Its equation may be 
Fig. 1 expanded into the series 

!; 2 - (j. .‘_ c. 53 i_ . . . 
I’ (fj.4) 

Solutions (3) and (4) must be discarded, as their substitution into (1.4) 

yields negative values of density in the nelghborhood of point ?? . 

It can be shown with the use of expansion (6.4) and of the expression for 

6' of (1.4) that lim 6(k) - 0 , when ZI - - m , which means that boundary 
condition (1.5) Is fulfilled. 



7. The solution of the system 
dimensionless parameter A . Its 
A-=‘, It can be assumed that 
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of Equations (1.4) is dependent on the 
variation depends on parameter u. . With 

0' (h) = 0 (7.1) 

and consider Equation (6.2). IS in (1.5) po- TO is assumed, then 9(X) - 1 
for all hE(- m,~). 

(A 
Equation (6.2) Is to be solved with the Sollowlng 

boundary conditions: = - 0 >g-- m) and (A - (D , C - 0) . Point (A - m, 
6 = 0) ;n the case of Equation ( .2) is an Isolated singular point of the 
(;aid:e type. Axis C - 0 will be the solution when 1 L A < 0 . Point 

, C = 0) , which Is of nodal t 
The solution in the interval (- = 

e, corresponds to a weak discontinuity. 
, 1 3" is determined by numerical methods. 

Thus, when A - = , a heat wave heats momentarily the whole volume of gas, 
and the boundary between gas and vacuum recedes into Infinity, while a relax- 
ation wave travelling with the Isothermal velocity of sound Jfm,t'lin spreads 
throughout the quiescent gas. 

the problem is reduced to Sindlng a solution which would 
sat~~S~'~~at~o~s~(~.4) and boundary conditions (3.1) and (6.1). The problem 
is solved by numerical methods. Integration from A - 1 to A = - m yLeb%J, 
as In the case of the problem considered in cf+j, a point A*, Co at which 
dX/dc - 0 d2 X/dCa . The singularity arising in this case prevents the deri- 
vation of A continuous solution. A discontinuous solution is, consequently, 
formulated, using Equations (2.3) at discontinuity. The Independent parame- 
ter A obtained In the process makes it possible to satisfy one of the con- 
ditions (6.1), namely: c---1 when A = - * . . The condition of bc= 0 
is automatically fulfilled. 

9. The above assumptions tend to indicate the existence of a certain 
value of A - A, which would segregate all solutions into two classes. 

a.2 84 a6 to 
Fig. 2 

O! 

a4 

a4 

-a4 

2.4 

a8 

L!z a4 as I26 hU 

a 

Pig. 4 P&3. 5 

With A,< A -Z - 
(-- A,1 

the temperature 9(A) wlll be monotonous In the Interval 
with mine at point A, . 

solut&n ma; be descrlbad as follows: 
'Ihe qualitative features of this 

throughout a gas at rest with t > 0 
there spreads a perturbation at the front of which the parameters T, p, u 
and r(??T/W) undergo a continuous change, with only the derivatives of these 
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becoming discontinuous. 
front". 

A perturbation of this kind Is called "tAe heat 
A strong isothermal discontinuity spreads behind this front, while 

the left-hand boundary expands Into vacuum with an infinitely great speed. 
In the Interval between the vacuum and the Isothermal discontinuity all of 
the hydrodynamic parameters, and the temperature change monotonously. Exam; 
plea of such solutions are shown on Pig.2 to 4 for the following values of 
parameters: v - 1.4, n = 0.2, A - 3, A - 0.714 X lo8 and ,A - 0.714 x 106. 
The new variables appearing on Fig.2 to 6 are defined by 

1 A 

a 
s 

6dh= 
s 

6 dh, z(l-O-5 

When 0 c A < A,, , the temperature 
Interval (- m, AI) 

e(A) Is no longer monotonous In the 
and temperature min e Is reached at a certain point 

;!A:) 
where - .=<x:<xl , and e'(A,) - 0 , which means that also the flow 
- 0 . 

The hydrodynamic parameters C and 6 reach their maximum values at a 
certain point A,. iin analysis of Equations (1.4) shows that all of the 
parameters C, 6, 8, q change smoothly In the Interval (- m, A,] , and that 
A, Is contained In the Interval (-(D, A,] . 

An example of the second class of solutions Is shown on Fig.5 and 6 for 
the following values of parameters: v - 1.4, n - 1, A = 1, A - 0.625. 
We may note that it had not been possible to derive this solution b 
method set forth In Section 10. The basic system of Equations (1.1 
solved here by the method of finite differences, as described In [9 j; 

the 
was 
. 

10. Numerical integration of system (1.4) from point A = 1 to point 
A - A, Is carried out by the conventional point to point method. Computation 
In the Interval [A", l] In the Indicated direction does not result In any 

loss of accuracy. Difficulties related to 
the loss of correct signs appear during 
numerical lntegrdtlon In the Interval 
(-m 111 * The boundary value problem 
arls& here cannot be solved by the usual 
approximation method. With A,sA < - the 
following Iteration process Is used: with 

04 

t;e4 lven function e(A) , using expan?on 

t '5 
. , we Integrate the equation of 5 of 

1.4 from A=-= to A - A1 , and then 
Integrate equations of 8', 6' and q' with 

0 
respect to the derived function c(A) from 
A-A to A=-= uelng the quadratic 
form t 4Il) for solvl& the equation for 6'. 

-64 This process Is repeated until convergence' 
is reached, when conditions at the left- 
hand side boundary (6.1) will be satisfied, 

.a8 L while at the right-hand side boundary a 
Fig. 6 certain value Cao, generally not equal to 

the known Ca, will be obtained with A = A,. 
ParameW A, Is selected so as to have Cpo- Ca . 

In conclusion the author wishes to thank N.N: Ianenko for useful dlscus- 
slons of this problem. Part of the computations in Section 9 was carried 
out by T.T. Ivechenko for which the author expresses his thanks. '_ 
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