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A two-dimensional self-similar problem of discharge of a heat conducting gas
into vacuum is analyszed. The temperature at the boundary of gas and vacuum
is assumed to change as an exponentlal function of time. The coefficlent of
thermal conductivity depends exponentially on temperature and density. The
initial gas density 1s assumed to be filnite and constant. With definite
values of exponents this problem is self-similar, i.e. the system of partial
differential equations can be reduced to the solutlion of a system of ordinary
equations.

The self-modeling properties of soclutions of this kind of problems has
been noted earlier in [1 and 2]. The problem analyzed here 18 a particular
case of the problem of piston motion considered in [3]. In this problem,
however, there appears at the boundary of gas and vacuum & new singular point
which does not occur in the piston problem.

A numerical solution of the boundary value problem defined by a system
of ordinary equations 1s made difficult by the presence in the latter of
singular points, and of discontinuities in the sought solution. These dif-
ficulties have been overcome by a qualitative analysis of the behavior of
integral curves, and by the selection of & sultable method of numerical inte-
gration.

It 1s shown in this work that, depending on the 1nitial parameters of the
problem, there may exist two kinds of solutions, This had been noted earlier
in (1, 3 and 4]. Examples of these are presented here. The degeneratlion of
the solution into a trivial one, when the thermal conductivity coefficlent
is either invariant of density, or increases with increasing density, 1s
pointed out.

1. We consider a cold gas defined by the following equations of state:
p = RoT. a:TﬁlT
Here, & 1s the gas constant, vy 18 the Poisson's adlabatic exponent,
P 18 the pressure, p the density, T the temperature, and ¢ the inter-
nal energy. One-dimensional equations of a plane motion in Euler coordinates
have the form
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Here u 1s the velocity and = the coefficient of thermal conductlivity.
The temperature of the vacuum space bounding the gas is glven by
T = Tg" (n>0, To= const) (1.2)

With the assumption that

* = Kop L THIIT (%o = const)
the problem will be a self-similar one. The introduction of variables
_ _(n+2)r o
= W ) T = Byt™0 (M) (Bo = const [T°])
u=VRBL(2),  p=ped (M) (1:3)
reduces system (1.1) to a system of ordinary equations
5 Lk % %o L
’ n ’ n
6 =T q, 9 =”xjjzy A= Eg;;{Bo
v {ar n A—C
v =0+ gzt agr=s
, 26 (1.4)

¢ = — g [T — DO+ 5 0+ E— e ]

where A4 1s a dimensionless constant.

As the front of expansion is also the trajectory of particles, we have

u= 3" — YRBi" %
Taking into account (1.2) and (1.3) we obtain
8, = To/Byy, 8, =0, A =¥, (1.9)

It was shown in [5 and 6] in which gas dynamic effects were omltted that
with n > 0 the perturbation front spreads with a finite velocity. Here,
it 1s assumed that X < » . The value of B, can always be selected so as
to have th the perturbation front ) = 1 , in which case we have

(a) e =0, (b) ¢=0, (c) 8=1, (d) g=0 (1.6)

Conditions (1.6) mean that at the perturbation front the hydrodynamic
parameters and the heat flux are continuous. If §’(1l) < » , then condition
(d) follows from (a). However, generally speaking, the condition for §(1)<w
is not always fulfilled.

2. In deriving our solution, we shall use the conditions at the discon-
tinuity which 1n the presence of thermal conductivity effects are
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Pl(ul_D) = Pz(uz—D)v p1 (¥ — D)* 4+ Rp, Ty =
=02 (up — D)? +R,02T1
(2.1)
JT
1 T1> + .[))p]Tlul—V.ljaT!l =

o1 (s — D) [ 4 &

Vv 2 T—

2 T
= pe(ue — D) (% + Ti‘f Ty 4 lipaTaus — v o .

Here, D 1s the discontinulty velocity, and the subscripts 1 and 2 denote
parameters in front of the discontinulty, and behind 1t respectively. In the
derivation of equations we shall make use of the fact that the temperature
in the 1nterval between the forward and the rear discontinuity fronts 1s con-
tinuous (isothermic process).

As the problem considered here la a self-similar one, the discontinuity
will always be a A-1line. Therefore,

D = VY RB,t"™\ (2.2)
The substitution of (1.3) and (2.2) into (2.1) yilelds
- 0, 06— M)? _ 181 (§1— M) — 02
b=ht Ty =TT e=atio, oo

(2.3)

3. Point M (X =1,0= 0, C= 0, 6= 1, q = O), which corresonds to
the perturbation front (1.6) will be a singular point. It belongs to a mani-
fold of singular points ¢ = O, ¢ = O , . The integral curves passing through
point ¥ can be found by separating the main terms of the right-hand sides
of system (1.4). The singular point ¥ 1s such that only one integral curve
emanating from it can be found in the relevant area. The solution in the
perturbation front neighborhood is approximately defined by the following

Formulas: n
s 2(n + 1) ntHL (] Ay o
k= apraame) 0 O=kA—WTL =
k (¢ o A ¢
n n A —n
C.—:—mexpn—_}_z'g(i—X) ex -n—_i:—z“dll
1

We note that with n > O we have n/(n + 1) < 1 which means that at the
front the temperature derivative 1is infinite.

4, It is known that in the absence of thermal conductivity, the gas efflux
velocity 1s finite and equal to — 2z0/(y — 1) , where ¢, 1is the initial
velocity of sound of the gas at rest. It was noted in [7] that the efflux
velocity of a gas subject to energy release, 1s infinlte. In the problem
considered here, the heat conducting gas will also expand with infinite velo~
city. We shall prove this (*).

*) The proof of this in Lagrangean coordinates was kindly communicated to
the author by S.P. Kurdiumov and P.P. Volosevich.
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We shall show that 8{(Xxg) # O, if (o= %; is of finite magnitude. It
follows from Equations (1.4) that

(nd) = (0" + 25 L) (A= =81 = f (M)

Integrating the above equation over certaln interval Xos X s X, . we

obtain I
8 (M) =8 (M) exp— {7 (W) dA (4.1)
A
We divide the integral of (4.1) into two
Ay A ¢ dh 2\), o dh
n Id
T = K fRydr = — n+2§ A—CF—86 "; (A—0r—8
A

and consider 1lim g for X = %o+ O . It 1s evident that the first Integral
is finite, and so is the second one. It can, in fact, be replaced in the
nelghborhood of point Ao by

Ay Ay
toea, te . 8 (M)
MSH___(ng)z—ﬂ"c2+§—ﬁ d?umcg—}—lne(ko)

Here ¢, 1is a finite constant. Therefore, the integral
J (ho) = lim J (A) = 1 - ¢s 4 In g0
A=Ryt0 (o)

is finite and 6(dp) # O , which contradicts condition (1.5). Therefore,
the expansion velocity cannot be finite. We may point out that this proof
is valid for any X .

It is possible to indicate an integral curve for which &, = O , if we
assume (o= — . Proof of this will be given in Section 6.

5. The expression for a dimensionless flow 1s given by the formula of

(1.”-1-) 1+n

i
g=—A508 "¢
To have a physical sense, the flow at the front of expansion must be
finite and positive. Therefore,

0 (—o0)=0 ((>0; 8 (—x)<0+oc0 (I=0)
8" (— oo) = — oo (1< 0) (5.1)

~

Because of the condition that g’(— =) # 0 , when A = O and a(x) = 0
for -—w<X <1, 1t follows that g,= = . Consequently, the problem stated
in Secticn 1 can have any meaning only, 1f the temperature at the boundary
is considered to be infinitely great. This means that with the eXxponential
temperature law (1.2), and with a finite value of T, and A s O , the prob-
lem has a degenerate solution. The boundary expanding with an infinite velo-
city, locks the heat flow at infinity, and there 1s no motion whatsocever.



1214 V.E. Neuvaghaev

6. Conditions at the front of expansion (1.5) are defined by point
N(k:‘“’x’{’:eo,‘:.:—“30’6:“‘0,4:90) (6‘1)

where 6, and ¢, remain to be determined. Point ¥ , as polnt ¥ , is a
singular point of system (1.4), and belongs to a manifold of singular poilnts

A = — oo, = — o, 6=20
It follows from conditions (6.1) and (5.1) that a,'= 0 , when x > O .
It 1s, therefore, possible to substitute, as an approximation of (¢’ of (1.4%)
in the neighborhood of point ¥ , by Equation
, "
YTy {S *5—601 (6.2)
We shall use the transformation ¢ = 1/y , X = 1/x for the analysls of
integral curves 1in the neighborhood of point {x = 0, y = 0) within quadrant
x s 0, ys 0. Equation {6.2) then becomes

r iy —x)
v (- 2) [(z — y)* — Box?y] (63)

and the singular polnt moves into the coordinate origin. Its character is
established on the basis of results obtalned by Frommer {8). We introduce

notations vyl z = u, $(u, ) =y (z,u) —u
The critical directions along which the integral curves may, in this case,
reach the singular point will be
1) v =0, 2y u =1, (3) w={(n-+2)/n, {4) u = oo
According to [8] the following gualitative conclusions may be deduced.

There 1is only one intgral curve in direction (1), namely, the coordinate axis
y = 0 (because 3y/du < O , when x = 0, u = O}

“‘ki:;ﬁﬁj There are also single curves only with slopes
/}91XM defined by {2) and (3} which pass through the
I’T

coordinate origin {8¢/3, < 0 , with u =1 ,

x =0, and 3y/ou < O , with u =(n + 2}/n ,
x = O)., Direction (4) has an infinite multi-
plicity of integral curves. The character of

8|

-
/ ;/ curves defined by Equation (6.3) 1is represented
- in Fig.l.
5

|

The curve with slope {2) will yield the
unknown solution, and 1ts equatlon may be

expanded lnto the serles
[ =2

cx—0 s (6.4)

i

Solutions {3) and (4) must be discarded, as their substitution into (1.4)
vields negative values of density in the nelghborhood of point ¥

It can be shown with the use of expansion (6.4) and of the expresslon for
6’ of (1.4%) that 1im 6(A) = O , when XA = — = , which means that boundary
condition (1.5) is fulfilled.
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7. The solution of the system of Equations {1.4) is dependent on the
dimensionless parameter 4 . Its variation depends on parameter x, . With
A == , it can be assumed that ,

& =0 (7.4)

and consider Equation (6.2). If in (1.5) Bo= 7o 1is assumed, then 6(A) = 1

for all A& (— oo,o0). Equation (6.2) is to be solved with the following

boundary conditions: (A = — = , g w-—w)and (A w® , { =0) . Point (A » =,
= 0) in the case of Equation (6.2) is an isolated singular point of the
saddle” type. Axis { = O will be the solution when 1 < i < = , Point

(A =1, ¢ =0) , which is of nodal type, corresponds to a weak discontinuity.

The solution in the interval {(— = , 1) is determined by numerical methods.

Thus, when 4 = = , a heat wave heats momentarily the whole volume of gas,
and the boundary between gas and vacuum recedes into infinity, while a relax-
ation wave travelling with the isothermal velocity of sound }fjiiafhn spreads
throughout the qulescent gas.

8., With 4 # = , the problem is reduced to finding a sclution which would
satisfy Equations (1.4) and boundary conditions (3.1) and {6.1). The problem
is solved by numerical methods. Integration from L =1 to A =» — = ylelds,
as in the case of the problem considered in [%], a point A°, (° at which
d /d¢ = 0 , d®)2/d¢®. The singularity arising in this case prevents the deri-
vation of a continuous solution. A discontinuous solution is, consequently,
formulated, using Equations (2.3) at discontinuity. The independent parame-
ter )\ obtained in the process makes it possible to satisfy one of the con~
ditions (H6.1), namely: { = — = , when XA = — @ .. The condition of &;= O
is automatically fulfilled,.

9. The above assumptions tend to indicate the existence of a certain
value of 4 = A, which would segregate all solutions into two classes.

}
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With A4,< 4 < » the temperature #(1) will be monotonous in the interval
(—= , %,)], with ming at point 1A, . The qualitative features of this
solution may be describad as follows: throughout a gas at rest with ¢ > 0O
there spreads a perturbation at the front of which the parameters T, p, u
and x(37/3r) undergo a continuous change, with only the derivatives of these
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becoming discontinuous. A perturbation of this kind 1s called "the heat
front”. A strong isothermal discontinulty spreads behind this front, while
the left-hand boundary expands into vacuum with an infinitely great speed.

In the interval between the vacuum and the isothermal discontinuity all of
the hydrodynamic parameters, and the temperature change monotonously. Exam=-
ples of such solutions are shown on Pig.2 to 4 for the following values of
parameters: y = 1.4, n = 0.2, A =3, 4 = 0.714 x 10° and 4 = 0.714% x 1C°
The new varlables appearing on Fig.2 to 6 are defined by

1 A
a S §dh= S 8dh, 1 —0 =t

When 0 < 4 < 4, , the temperature (1) is no longer monotonous in the
interval (— =, A, ) , and temperature ming 1s reached at a certain point
Ay , where — o < Az< X, , and 8’(A,) = O, which means that also the flow
Q?)‘a) =0 .

The hydrodynamic parameters ( and & reach thelr maximum values at a
certain point \,. An analysis of Equations (1.4) shows that all of the
paraméters (, 6, 8, ¢ change smoothly in the interval (— =, ;] , and that
As 1s contained in the interval (— =, X,] .

An example of the second class of solutions is shown on Fig.5 and 6 for
the following values of parameters: y = 1.4, n =1, A =1, A4 = 0,625,
We may note that it had not been possible to derive this solution by the
method set forth in S8ectlion 10. The basic system of Equatilons (1.1? was
solved here by the method of finite differences, as described in [9].

10, Numerical integration of system (1.4) from point i =1 to point
A = X; 1s carried out by the conventional point to point method. Computation
in the interval [A°, 1] in the indicated direction does not result in any
loss of accuracy. Difficulties related to
the loss of correct signs appear during
{"-- numerical integrdtion in the interval
(== , A,] . The boundary value problem
z ' arising here cannot be solved by the usual
approximation method. With 4,<4 < = the
o5 following iteration process is used: with
the given function 8{A) , using expansion
&6.4?, we integrate the equation of (’ of
1.4) from A\ = —= to XA =1, , and then
// integrate equations of §’, 6’ and ¢’ with
Y/ y | respect to the derived function ((}) from
42 /04 06 0F « X =X, , to A = — = , using the quadratic
form tu.1) for solving the equation for &’.
-04 This process 1s repeated untll convergence®
1s reached, when condltions at the left-
hand side boundary (6.1) will be satisfied,
N/ * while at the right-hand side boundary a
Fig. 6 certain value (,°, generally not equal to
the known (., will be obtained with X = i,
Parameter ), 1s selected so as to have (,°= (, .

In conclusion the author wishes to thank N.N. Ianenko for useful discus-
sions of this problem. Part of the computations in Section 9 was carrled
out by T.T. Ivechenko for which the author expresses his thanks.
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